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 This study presents a direct multicomponent analysis method 
using UV-Vis spectrophotometry to determine Cu(II), Fe(III), and 
Ni(II) ion content without prior complexation or separation. Single 
and multivariate regression was used to predict metal ion content, 
and the resulting model was trained and validated using a dataset 
of 25 multi-component samples. The mean recoveries for Cu(II), 
Fe(III), and Ni(II) using linear and ridge regression based only on 
absorbance at 805 nm were 99.97% and 101.6%, 95.42% and 
95.65%, and 99.43% and 99.99%, respectively, for the 20% test 
data. The mean recoveries for Cu(II), Fe(III), and Ni(II) using 
linear and ridge regression based only on absorbance at 805 nm 
were 92.27% and 95.03%, 125.3% and 124.11%, and 104.15% and 
105.52%, respectively, for the test solution outside of the training 
data. These results demonstrate the effectiveness of the 
multivariate UV-Vis spectrophotometric method for the 
simultaneous determination of Cu(II) and Ni(II) in 
multicomponent samples, which meets the analysis standard and 
can be successfully applied. Finally, the study sheds light on the 
influence of spectral interference on the accuracy of regression 
models. It highlights the importance of carefully selecting the 
wavelengths used as predictors in such models. This can have 
significant implications for developing and validating analytical 
methods, particularly in cases where multiple analytes were 
present in a sample. 

1. INTRODUCTION 
The analysis of metal ions in multicomponent samples offers significant advantages in terms 

of measurement efficiency. Numerous studies have been conducted to investigate the content of 
mixed metal ions in different contexts. For instance, Chen et al. (2019) optimized the decomposition 
and purification process of zinc metal by analyzing the content of Co(II) and Cu(II) in a concentrated 
zinc sulfate solution [1]. Similarly, Xu et al (2014). performed a quantitative analysis of Cd(II), 
Zn(II), and Co(II) in drinking water to mitigate their adverse effects and control the levels of metal 
ions that are considered safe for consumption. The need for simultaneous analysis of mixed metal 
ion samples in various fields has led to the continuous development and refinement of analytical 
methods to ensure their accuracy and reliability [2-4].  

Various spectrophotometric methods, such as atomic absorption spectroscopy (AAS) [5], 
atomic fluorescence spectroscopy (AFS) [6], and UV-Vis spectrophotometry [7], as well as other 
analytical techniques, have been used to quantitatively analyze mixed metal ion samples. Among 
these methods, UV-Vis spectrophotometry is one of the most extensively employed techniques, and 

  Indonesian Journal of 
Chemical Analysis 

Homepage: https://journal.uii.ac.id/IJCA    

https://creativecommons.org/licenses/by-sa/4.0/
mailto:suprapto@chem.its.ac.id
https://journal.uii.ac.id/IJCA/article/view/28000/version/37409
https://journal.uii.ac.id/IJCA


Suprapto et. al., Ind. J. Chem. Anal., Vol. 06, No 02, 2023, pp. 106-115 107 
 

Copyright © 2023 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 
2622-7126. This is an open-access articles distributed under the CC BY-SA 4.0 Lisence.  

its application has been developed for the simultaneous quantitative analysis of metal compounds 
and other compounds. This method is favored by many researchers because it is easy to use, fast, 
accurate, and efficient [1]. 

To improve the accuracy and stability of UV-Vis spectral analysis, various pretreatment 
methods have been developed to overcome overlapping spectra of multiple metal ions and minimize 
noise. Chemometric methods such as PCR, PLS regression, and multivariate regression have been 
applied to the simultaneous quantitative analysis of mixed metal ion samples. Variable selection 
methods have improved measurement accuracy and stability. This study focused on developing a 
reliable and accurate method for the determination of Cu(II), Fe(III), and Ni(II) using UV-Vis 
spectrophotometry [8-10]. 

This study presents an innovative and effective method for simultaneously determining Cu(II), 
Fe(III), and Ni(II) ions in aqueous solutions utilizing UV-Vis spectroscopy and regression models. 
The proposed method offers numerous benefits, including its simplicity, cost-effectiveness, and 
minimal sample preparation requirements, rendering it well-suited for routine analysis across diverse 
fields such as environmental monitoring, industrial process control, and quality assurance in the 
pharmaceutical and food industries. Notably, this method stands out from traditional metal analysis 
approaches employing UV-Vis spectrophotometers that often involve complexation processes to 
achieve accurate results [11-13]. A key focus of this study was to compare the performance of linear 
regression and ridge regression models in predicting the concentrations of the target metal ions based 
on their absorbance values at specific wavelengths. Furthermore, the impact of one ion's absorption 
on the prediction of another ion was examined using only three estimators. Ridge regression was 
found to be a valuable tool for enhancing the accuracy and precision of regression models, 
particularly when addressing multicollinearity issues present in spectral data. Overall, this study 
offers valuable insights into the development of a robust method for simultaneous ion determination, 
highlighting the significance of ridge regression in refining regression models and underscoring the 
negligible impact of one ion's absorption on the prediction of another.  

2. EXPERIMENTAL METHOD 
2.1. Materials and Instruments 

In this study, various apparatus and materials were used. The apparatus used included 
glassware, an analytical balance, a micropipette, a 10 mm quartz cuvette, and a UV-Visible 
spectrophotometer (Genesys 10S). Meanwhile, the materials used were CuSO4.5H2O (SAP 
Chemicals, >99%), FeCl3.6H2O (SAP Chemicals, >99%), NiCl2.6H2O (SAP Chemicals, >97%), and 
demineralized water (Brataco chemical). All the chemicals were purchased from a local store in 
Surabaya, Indonesia, and were used without any further purification. 

2.2. Methods 
In this study, the standard solutions were prepared by mixing different volumes of metal ion 

stock solutions and then diluting the mixed solution with demineralized water to obtain a multi-
component solution with final concentrations of Cu(II), Fe(III), and Ni(II). The concentration ranges 
of the metal ions in the multi-component solution were Cu(II) 3-5 g/L, Fe(III) 0.010-0.002 g/L, and 
Ni(II) 7-11 g/L, as shown in Table 1. The absorption spectra of the multi-component solution were 
measured using a UV-Vis spectrophotometer in the wavelength range of 200-1000 nm with 
demineralized water as a blank. Triplicate measurements were carried out to obtain accurate and 
reliable data. 

2.3. Multivariate Regression 
Multivariate regression analysis was used to analyze the multi-component training datasets, 

and the obtained regression model was utilized to predict the concentrations of Cu(II), Fe(III), and 
Ni(II) in the test solution. The multivariate regression equation was simplified as Eq. (1), where the 
dependent variable was yn, the independent variables were xn, B represented the intercept, and An 
was the regression coefficient. The error C was assumed to be 0 or E(C) = 0 in classical regression, 
but multivariate regression considered more perspectives to solve correlation problems, such as 
collinearity, inflation of variance, and insignificant dependent variables, among others [14]. 
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y_n  =A_1 x_1+⋯+A_n x_n+ B + C               (1) 

2.4. Ridge Regression 

Ridge regression is a regularization technique used in linear regression models to address the 
problem of multicollinearity, which occurs when there is a high correlation among predictor 
variables. It is particularly useful when dealing with datasets where the number of predictors is larger 
than the number of observations or when predictors are highly correlated. 
The basic idea behind Ridge regression is to introduce a penalty term to the ordinary least squares 
(OLS) cost function. This penalty term is determined by the hyperparameter α (alpha) and is added 
to the sum of squared residuals in the cost function. The cost function of Ridge regression can be 
represented as in equation (2): 
 

Cost = RSS + α * Σ(β^2)                                                             (2) 

Here, RSS is the residual sum of squares, β represents the regression coefficients, and Σ(β^2) is the 
sum of squared coefficients. The term α controls the amount of regularization applied to the model. 
A larger α value increases the penalty and results in smaller coefficient estimates, which helps reduce 
the impact of multicollinearity. To estimate the regression coefficients in Ridge regression, a 
technique called the method of shrinkage is used. It involves minimizing the cost function by 
adjusting the values of the regression coefficients. The solution is obtained through optimization 
algorithms such as gradient descent or matrix inversion [15]. 

3. RESULTS AND DISCUSSION 
The absorption spectra of metal ions can vary depending on their chemical form and 

surrounding environment. Therefore, it is necessary to carefully select the appropriate wavelengths 
for analysis and consider any potential interferences or overlapping spectra from other ions in the 
sample. In this study, the absorption spectra of the individual metal ions were used to develop a 
multivariate regression model for the simultaneous quantification of Cu(II), Fe(III), and Ni(II) in 
mixed solutions. The individual metal ion spectra of Cu(II), Fe(III), and Ni(II) in mixed solutions 
were shown in Figure 1. 

 
Figure 1. The absorption spectra of (a) Cu(II), (b) Fe(III), and (c) Ni(III). 

 
Figure 1 indicated that Cu(II) and Fe(III) have absorbance peaks at 805 and 295 nm, respectively. 
While, Ni(II) has three prominent peaks at 495, 660, and 720 nm. The nitroso complex of zinc, nickel, 
and copper have the maximum peaks at 442, 455, and 492 nm, respectively [2]. The regression curves 
of individual Cu(II), Fe(III), and Ni(II) at 805 nm, 295 nm, and 395 nm as a function of concentration, 
were shown in Figure 2. The concentration required to obtain a linear curve for Cu(II), Fe(III), and 
Ni(II) salts was higher than their complex form [2-5]. But, in terms of sample preparation direct 
Cu(II), Fe(III), and Ni(II) salts were simpler and did not require a buffer solution. Thus, this method 
was very promising for routine analysis in metal pickling wastewater or electroplating metal 
concentration monitoring. 
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Figure 2. The regression curve of (a) Cu(II), (b) Fe(III), and (c) Ni(III)  

 
The absorption spectra of 25 multicomponent training set solutions were shown in Figure 3(a). Figure 
3(b) was the overlay of individual spectra of Cu(II), Fe(III), and Ni(II). It can be seen that the spectra 
of each metal ion overlap each other. This means that the absorption of each metal ion has been 
influenced by the other metal ion, so, it was considered that determining the concentration of one 
metal ion should involve the additive absorbance from the others. 

 
Figure 3. Absorption spectra of 25 multicomponent solutions (a) spectra overlay of Cu(II), 

Fe(III), and Ni(II) (b) 
 

The absorbances at 805, 720, and 295 nm showed correlation coefficients of 0.96, 0.85, and 0.53, 
respectively, with variations in Cu(II) concentrations. In contrast, absorbances at these same 
wavelengths showed correlation coefficients of -0.96, -0.85, and -0.53, respectively, with variations 
in Fe(III) concentrations, indicating an inverse correlation between the two metal ions. Ni(II) 
concentrations were well-correlated with absorbances at wavelengths 295, 495, 395, and 720 nm, 
with correlation coefficients of 0.83, 0.76, 0.98, and 0.53, respectively, as shown in Figure 4. 
 

 
 

Figure 4. The correlation coefficient between the concentration of Cu(II), Fe(III), and Ni(II) and 
the absorbance at 805, 295, 495, 395, and 720 nm 
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The correlation between absorption and concentration at 495 nm was less significant for Cu(II) 

and Fe(III), although Ni(II) showed a correlation of 0.76. Ni(II) had a stronger correlation with 
absorption at 295 and 395 nm, which were present in Ni(II) individual spectra. The absorbance at 
720 nm, which served as a marker for Ni(II), had a correlation of 0.85 with Cu(II), even though it 
did not appear in the individual Cu(II) spectra. Fe(III) showed a negative correlation at 720 nm, 
indicating that estimators at 495 nm and 720 nm should be considered for elimination. Feature 
selection can be performed automatically using regularization regression, such as Ridge regression, 
as shown in the correlation heatmap in Figure 4. Ridge regression can select the most important 
features and reduce the coefficient of the least important feature if two features are linearly correlated. 
The L2 regularization performed by Ridge regression adds a penalty equal to the square of the 
coefficient to the minimization target, which affects the cost function based on the chosen alpha. 
Table 1 summarizes the regression coefficients of Cu(II), Fe(III), and Ni(II) at each maximum 
wavelength as a function of alpha 0.01 and 0.1. The Cu(II) Ridge regression model yielded a 
coefficient of -0.718 at 395 nm for alpha = 0.01. Fe(III) did not show a reliable correlation with any 
absorbance wavelength according to Ridge regression, and the weighting decreased as alpha 
increased. A lower alpha resulted in a regression model more like ordinary linear regression. 

 
TABLE I. The ridge regression weight at each wavelength as a function of alpha 

Alpha 0.01 0.1 
Wavelength (nm) Cu Coef. Fe Coef. Ni Coef. Cu Coef. Fe Coef. Ni Coef. 

805 3.2820 -0.0131 -2.2297 2.6155 -0.0105 -1.5477 

295 0.4295 -0.0017 1.3165 0.5889 -0.0024 2.6741 

495 0.2195 -0.0009 -1.7957 -0.1967 0.0008 0.2919 

720 1.2298 -0.0049 2.8400 1.3091 -0.0052 0.2815 

395 -1.9173 0.0077 6.6963 -1.7446 0.0070 4.7705 
 

The Ridge regression slope values at 495 nm and 720 nm provided a way to eliminate these 
estimators. To ensure the reliability of the regression models, the intercept and slope of both Linear 
and Ridge regressions of each Cu(II), Fe(III), and Ni(II) were sampled 1000 times using the No-U-
Turn Sampler (NUTS) with a posterior distribution assumption. The slope and intercept were 
assumed to be normally distributed with a standard deviation of the half-Cauchy distribution. The 
PyMC3 library in Python was used for inference [16]. The comparison of the slope distributions for 
Cu(II), Fe(III), and Ni(II) between the linear and ridge models is presented in Figure 5. The 
determination of Cu(II) was more precise, with a smaller standard deviation. The slope at 805 nm 
gave a positive value, while the slope at 395 nm gave a negative value. The absorbance at 295 nm 
did not significantly contribute to the regression models, as its value was close to zero. The slope of 
the Ridge model was more centered around 0.0, as shown in Figure 5(a). The slope distribution for 
Fe(III) and Ni(II) showed the same pattern in both linear and ridge models, as depicted in Figures 
5(b) and 5(c). The slope of both Fe(III) and Ni(II) at 805 nm gave a negative value, and the slopes at 
295 nm, 395 nm, and 495 nm did not significantly contribute, as their values were close to zero. 
Table 2 displays the prediction recoveries of the linear regression and Ridge (alpha=0.1) models 
generated using absorbance estimators at wavelengths 295 nm, 395 nm, and 805 nm. The dataset was 
split into a training set (80%) and a test set (20%) to evaluate the accuracy of the models. 

 
TABLE II. Linear and ridge regression recoveries using estimated absorbances at 295, 395, and 805 
nm 

Compounds Linear Ridge 
Cu 100.64 101.90 
Fe 98.13 97.77 
Ni 98.13 97.77 
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Figure 5. Forest plot of the Linear and Ridge regression model slope distributions of Cu(II) (a), 
Fe(III) (b), and Ni(II) (c) with 5 estimators. 

 
Figure 6 presents a boxplot of the recovery values for Cu(II), Fe(III), and Ni(II) using the linear and 
Ridge(alpha=0.1) regression models with absorbance at wavelengths 295, 395, and 805 nm as 
estimators. The boxplot shows that the determination of Fe(III) and Ni(II) using the linear model has 
a larger interquartile range (IQR) compared to the Ridge model, which skews the curve towards the 
maximum value. On the other hand, the determination of Cu(II) shows better precision and accuracy 
with a smaller IQR for both models, as seen in the boxplot. However, there was no significant 
difference in the recoveries obtained using the Ridge and linear regression models. 
 

 
 

Figure 6. The (a) Linear and (b) Ridge regression recoveries of Cu(II), Fe(III), and Ni(II)  
 

To validate the accuracy of the model, a test solution was prepared outside of the training dataset. 
Three replications of the test solution were measured in the same wavelength range, and their spectra 
are shown in Figure 7. 

(a) (b) (c)
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Figure 7. Spectra of test solutions containing Cu(II), Fe(III) and Ni(II) with concentration 

variations of [5, 0.008 and 8 mg/L] and [3, 0.008 and 8 mg/L] 
 

Figure 8 displays the predictions of the linear and ridge regression models for Cu(II), Fe(III), and 
Ni(II) using the test solution. 

 

 
 

Figure 8. Test solution prediction of Cu(II), Fe(III) and Ni(II) 
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The linear and ridge regression models' mean recoveries for Cu(II), Fe(III), and Ni(II) in the test 
solutions were calculated and found to be 94.36%, 102.87%, and 103.51% for the linear model, and 
96.37%, 108.56%, and 104.07% for the ridge model, respectively. In addition, a further analysis was 
conducted using only three estimators at wavelengths 295, 395, and 805 nm to investigate the impact 
of one ion absorption on another. The estimator at 495 and 720 nm was excluded, and the resulting 
slope value was found to be close to 0, indicating that this variable did not significantly affect the 
regression equations' predictions. Figure 9 shows the slope's value, supporting this finding. Box plots 
of linear and Ridge regression models for Cu(II), Fe(III), and Ni(II) using typical absorption of each 
ion, without eliminating the influence of other ion absorption, are shown in Figure 10 (a-f). 
 

 
Figure 9. Forest plot of linear and ridge regression model slope distributions of Cu(II) (a), 

Fe(III) (b), and Ni(II) (c) with 3 estimators 
 

 
 

Figure 10. Boxplot of linear and ridge regression model of Cu(II) (a), Fe(III) (b), and Ni(II) (c) 
for 20% test solution 

 
The linear and ridge regression models based only on the absorbance at 805 nm were used to 

predict the mean recoveries for Cu(II), Fe(III), and Ni(II) in test data and a test solution outside of 
the training data. The mean recoveries for Cu(II) using linear and ridge regression in the 20% test 
data were 99.97% and 101.6%, respectively. For Fe(III), the mean recoveries using linear and ridge 
regression in the 20% test data were 95.42% and 95.65%, respectively. The mean recoveries for 
Ni(II) using linear and ridge regression in the 20% test data were 99.43% and 99.99%, respectively. 
For the test solution outside of the training data, the mean recoveries for Cu(II) using linear and ridge 
regression based only on absorbance at 805 nm were 92.27% and 95.03%, respectively. The mean 
recoveries for Fe(III) using linear and ridge regression based only on absorbance at 805 nm were 
125.3% and 124.11%, respectively. For Ni(II), the mean recoveries using linear and ridge regression 
based only on absorbance at 805 nm were 104.15% and 105.52%, respectively. The boxplot for the 
out-of-sample test solution is shown in Figure 11. 
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Figure 11. Boxplot of the linear and ridge regression model of Cu(II) (a), Fe(III) (b), and Ni(II) 
(c) for out-of-sample test solutions 

4. CONCLUSION 
In conclusion, the UV-Vis spectrophotometric method used in this study is an efficient and 

accurate way to determine the metal ion content of Cu(II) and Ni(II) in multicomponent samples 
without prior complexation or separation. The regression models obtained through single and 
multivariate regression analyses provide comprehensive predictions of metal ion content. The mean 
recoveries for Cu(II), Fe(III), and Ni(II) indicate that the linear and ridge regression models based 
only on absorbance at 805 nm have high accuracy for both test data and test solutions outside of the 
training data. Overall, the results demonstrate that the multivariate UV-Vis spectrophotometric 
method is suitable for the simultaneous determination of Cu(II) and Ni(II) in multicomponent 
samples and can be applied successfully in various analytical fields. 
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