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Onconeuroepitranscriptomics (ONE) discusses epitranscriptomics 
enriched with the paradigms of neuroscience, neurology, 
and oncology. The deep observation of RNA modifications, 

epitranscriptomics, has evolved into an in-depth study of the arrangement 
of gene interpretation.1 Transformational modification of the RNA pathway 
has been identified in various brain physiology and various diseases, 
including cancers.2 MicroRNAs (miRNAs) are non-coding RNAs that 
manage gene expression at the post-transcriptional level via translational 
repression and mRNA degradation.3 

The biological function of some of the most basic mRNA modifications 
is unknown.4 However, advanced technologies such as nanopore (Oxford 
Nanopore) and nanowell (SMRT) sequencing can be used for resolution-
based detection.5 Exact experimental design and replication, combined 
with inclusion control, are critical for achieving the highest level of 
confidence and avoiding false-positive results.6 

According to the postulates of epigenetics, various views hold that histone modifications and DNA 
methylation are connected by the “writer” of enzymes, recruiting the “reader” of proteins, and are 
abolished by the “eraser” of enzymes.7 The ONE viewpoint demonstrates that the elemental landscapes 
of RNA in epitranscriptomic alterations recommend that "erasers" and "readers" may not be essential 
to several modifications.8 "Writer" enzymes have been demonstrated to be effective for assorted types 
of RNA modification.9,10 The proteins m5C and m6A were designated as "reader" proteins. Some RNA 
modifications have a direct effect on RNA structure and/or base pairs and thus do not necessitate the 
use of a "reader" protein.11 The process of modifying the RNA molecule has the potential to eliminate 
m6A.12 Most of epitranscriptomic adjustment are not dynamic.13 The methylation process of m6A RNA, 
which is a pioneer in neuroscience, can provide a multifaceted understanding of the improvement of the 
nervous system, neurological diseases and disorders.14,15

Several studies have confirmed that FTO (fat mass and obesity-associated, an m6A demethylase) is 
one of the major demethylases in m6A methylation, is plentiful in the brain and governs dopaminergic 
pathways and neurogenesis in adults.16-18 The half-life of most eukaryotic RNAs is extremely short. 
Accordingly, convinced "erase" enzymes may enhance out-of-date, pricipally during epitranscriptomic 
modifications that can be comprehended through RNA molecule modification.19 Because degenerating 
modifications are not advantageous to the cell, the process of epitranscriptomic modifications in various 
RNA molecules that are more stable, such as rRNAs, can be deficient in various "eraser" enzymes.20-22 
In cancer, especially in hepatocellular carcinoma, For miR-126, the prominence of m6A in miRNA 
advancement was first recommended.23,24

METTL3 is linked to hippocampal memory function. FTO performs a variety of pathophysiological 
functions in brain tissue.25 Another valuable m6A RNA methyltransferase, METTL14, is involved in learning 
epitopes as well as transcriptional regulatory processes in the striatum.26-27 m6A RNA methylation is 
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critical in cerebellar development.28,29 Modification process of METTL14-dependent m6A is requisite 
for its refinement by the Microprocessor complex.30 Adjustment of miR-126 by METTL-14 is very 
paramount to avert cell invasion.31 In various malignancies, such as: colorectal, lung, bladder, gallbladder, 
and ovarian cancer advances the refinement of multioncomirs, i.e.: miR-143, miRNA-92, miR-1246, miR-
221/222, and miR-126. They are targeting tumor suppressors. Moreover, the m6A-dependent accretion 
of miRNAs outcomes in tumor progression.32,33 MiRNAs' ability to suppress target mRNA translation is 
reduced by m6A modification.12 The m6A levels on let-7a-5p and miR-17-5p elevated in pancreatic and 
CRC tissues without affecting miRNA expression.34

RNA modifications are involved in a variety of neuronal mechanisms.35 Different RNA modifications 
of tRNAs, small RNAs, and mRNAs are enforced for trivial biological mechanisms such as neuronal 
differentiation, brain development, and individual neuronal function.36,37 Several modified RNA molecules 
and related complexes that regulate and "read" various RNA modifications are critical in controlling 
the function and development of multiorganism nervous systems.38,39 Mutations in several human 
genes that modify transfer RNA are linked to neurological disorders, particularly intellectual disability 
(tRNA). In the absence of RNA modification, the stability of tRNA changes.40 As a result, translational 
efficiency is reduced and tRNA fragments form, potentially impairing neuronal function.41,42 As a 
presumed 2′-O-methyluridine methyltransferase, TRMT44 is estimated to methylate tRNASer residue 
44.43 Mutations in this gene were found to be the cause of incomplete epilepsy with pericentral spikes 
(PEPS), a new mendelian idiopathic epilepsy.44

PiRNA and siRNA are destabilized in the truancy of Hen1/Pimet, and sncRNA silencing activities are 
compromised.45 Notably, under normal laboratory conditions, Hen1mutant flies do not show increased 
lethality or sterility, but do show increased memory delinquency, brain vacuolization, neurodegeneration, 
and an abridged generation.46 This suggests that small RNA and Nm pathways may protect opposite 
to neurodegenerative occurences.47 The union of RNA alterations with miscellaneous nervous system 
diseases and disorders proves the concern of this chemical for brain advancement and cognition.48 The 
function of RNA modification in this process is not fully comprehended. The challenge is that scientists 
need to identify the class and existence of RNA that is directed by RNA-modifying enzymes and is the 
cause of neurological shortages.49

Neurons face different challenges about RNA localization to distal processes and local translation, 
most likely occurring in the brain, is the combined effect of RNA modification in each of the different RNA 
classes that represent the fundamental information layer that dynamically fine-tunes gene regulation.50 
Futuristic research has the opportunity to decipher this complex onconeuroepitransscriptomics code.
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