Main Article Content

Abstract

Mikroalga memiliki kandungan lemak (lipid) dan asam lemak (fatty acid) yang dapat dikonversi menjadi salah satu energi alternative biodiesel. Biodiesel adalah bahan bakar alternatif yang tidak beracun dan dapat terurai secara alami. Kelimpahan dan pertumbuhan mikroalga Chorella Sp. yang sangat cepat dinilai ideal dan potensial untuk dijadikan sebagai bahan baku produksi bioenergi. Disisi lain mikroalga membutuhkan nutrisi seperti karbon dan nitrogen untuk pertumbuhannya. Sumber nutrisi dapat diperoleh dari limbah cair, seperti limbah cair hotel. Tujuan dari penelitian ini adalah untuk menentukan kondisi terbaik untuk Chlorella sp memproduksi kandungan lipid dengan memvariasikan rasio C: N 100: 7, 100: 13, 100: 32 dan panjang gelombang cahaya menggunakan lampu cahaya putih (380-750 nm) , lampu biru (450-495 nm), lampu hijau (495-570 nm), dan lampu merah (620-750 nm) juga mengamati kemampuan Chlorella sp untuk mengurangi nutrisi dalam media limbah cair. Percobaan dilakukan pada suhu kamar di bawah pencahayaan 2000 lux selama 15 hari. Hasil penelitian menunjukkan bahwa Chlorella sp menghasilkan konten lipid tertinggi (36,84%) pada rasio C: N 100: 7. Selain itu, Ketika alga dikultivasi dengan panjang gelombang cahaya berbeda menunjukkan bahwa Chlorella sp tumbuh lebih baik dan menghasilkan kandungan lipid sebesar 40,91% di bawah cahaya biru (450-495 nm) bila dibandingkan dengan jenis cahaya lainnya.

Article Details

References

  1. Acevedo, Stephanie., Nancy J.Pino, dan Gustavo A. Penuela. (2017). Ingenieria Y Competitividad. Biomass Production of Scenedesmus sp and Removal of Nitrogen and Phoshorus in Domestic Wastewater, 19(1), 177-185.
  2. Al-Kayyis, Hasanul dan Hari Susanti.(2016). Jurnal Farmasi Sains dan Komunitas.Perbandingan metode Somogyi-Nelson dan Anthrone-Sulfat pada Penetapan Kadar Gula Pereduksi dalam Umbi Cilembu, 13(2), 81-89.
  3. Asuthkar, Mounca., Yamini Gunti, Ramgopal Rao S, dkk. (2016). International Journal of Pharmaceutical Sciences and Research.Effect of Different Wavelengths of Light on the Growth of Chlorella pyrenoidosa, 7(2), 847-851.
  4. Braunwald, Teresa., Lisa Schwemmlein, Simone Graeff-Honninger et al. (2013). Appl Microbial Biotechnol.Effect of different C/N-ratios on carotenoid and ipid production by Rhodotorula glutinis, 97, 6581-6588.
  5. Binnal, Prakash dan P. Nirguna Babu.(2017). South African Journal of Chemical Engineering. Statistical Optimization of Parameters Affecting Lipid Productivity of Microalgae Chlorella protothecoides Cultivated in Photobioreactor Under Nitrogen Starvation, 23, 26-37.
  6. Chiu, Sheng-Yi., Kao C, dan Chen T.(2015).Bioresource Technology. Cultivation of Microalgal Chlorellafor Biomass and Lipid Production Using Wastewater as Nutrient Resource, 184, 179-189.
  7. Cho, S., Choi W, Oh S, dkk.(2011). J Biomed Biotechnol.Enhancement of Lipid Extraction from Marine MicroalgaeAssociated with high-pressure homogenization process.
  8. Converti, Attilio., Alessandro A. Cassaza, Erika Y.Ortiz, Patrizia Perego, Marco Del Borghi. (2009). Chemical Engineering and Processing: Process
  9. Daniyati, R., Yudoyono, G., Rubiyanto, A. (2012).Jurnal Sains dan Seni.Desain Closed PhotobioreaktorChlorella Vulgaris Sebagai Mitigasi CO2,1, 1-5.
  10. Fakhry, Eman M dan Dahlia M El Maghraby.(2015). Botanical Studies.Lipid Accumulation in Response to Nitrogen Limitation and Variation of Temperature in Nannochloropsis salina, 56(6), 1-8.
  11. Hadiyanto dan Azim, Maulana.(2012). Mikroalga Sumber Pangan dan Energi Masa Depan. Semarang: UPT UNDIP Press.
  12. Ho, Shih-Hsin., Yi-Di Chen, Ching-Yu Changdkk.(2017). Biotechnology for Biofuels. Feasibility of CO2Mitigation and Carbohydrate Production by Microalga Scenedesmus obliquus CNW-N used for Bioethanol Fermentation Under Outdoor Conditions: Effects of Seasonal Changes, 10(27), 1-13.
  13. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. (2008). Plant J. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances, 54, 621–639.
  14. Irhamny, Elvitriana, dan Vera Viena.(2014). Jurnal Purifikasi. Kultivasi Mikroalga Hijau Pada Sumber Nitrogen Berbeda Untuk Ekstraksi Lipida, 14(2), 99-105.
  15. Lam, M. K., dan Lee, K. T. (2011). Biotechnology Advances. Renewable and Sustainable Bioenergies Production from Palm Oil Mill Effluent (POME): Win-Win Strategies Toward Better Environmental Protection, 29, 124-141.
  16. Lari, Zahra., Narges M, dan Hossein A. (2016). Journal of Applied Phycology. Bioproses Engineering of Microalgae to Optimize Lipid Production Through Nutrient Management.
  17. Leesing, R., Thidarat P, dan Mutiyaporn P. (2014). International Journal of Biotechnologyand Bioengineering.Effect of Nitrogen and Carbon Source on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2, 8(4).
  18. Malla Fayaz A., Shakeel A. Khan, Rashmi, Gulshan K. Sharma, Navindu Gupta, G. Abraham. (2015). Ecological Engineering.Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production, 75, 343–349.
  19. Martin-Juarez, Judit., G. Markou, K. Muylaert dkk. (2017). Microalgae-Based Biofuels and Bioproducts. Breakthroughs in Bioalcohol Production From Microalgae: Solving the Hurdles.
  20. Martono, Hendro., Nanang Besmanto, Athena Anwar, dan Sukar. (2006). Bul. Penel.Kesehatan. Tingkat Efiktivitas Instalasi Pengolahan Limbah Cair Hotel-hotel di Yogyakarta, 34(1), 37-45.
  21. Mostafa, Soha S.M., Emad A S, dan Ghada I M. (2012).Notulae Scientia Biologicae. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production, 4(1), 56-65.
  22. Nigam, P. S. dan Singh A. (2011).Progress in Energy and Combustion Science.Production of Liquid Biofuels from Renewable Resources, 37, 52-68.
  23. Ogbonna, Innocent Okonkwo., dan James Chukwuma Ogbonna.(2018). Energy and Power Engineering. Effects of Carbon Source on Growth Characteristics and Lipid Accumulation by Microalga Dictyosphaerium sp. with Potential for Biodiesel Production, 10, 29-42.
  24. Perez-Pazos, Jazmin-Vanessa dan Pablo Fernandez-Izquierdo.(2011). Ciencia, Tecnologia y Futuro. Synthesis of Neutral Lipids in Chlorella sp Under Different Light and Carbonate Conditions, 4(4), 47-58.
  25. Pertamawati.(2010). Jurnal Sains dan Teknologi Indonesia.Pengaruh Fotosintesis terhadap Pertumbuhan Tanaman Kentang (Solanum tuberosum) dalam Lingkungan Fotoautotrof secara Invitro, 12(1), 31-37.
  26. Price, Kelsey dan Ihab H. Farag.(2013). International Journal of Engineering and Technical Research. Resources Conservation in Microalgae Biodiesel Production, 1(8), 49-56.
  27. Putri, Erisa Viony. (2012). Cultivation of Microalgae Using Palm Oil Mill Effluent for Lipid Production, Thesis, Faculty of Civil Engineering, Universiti Teknologi Malaysia.
  28. Romayanto, Muhammad Eko Wibowo., Wiryanto, dan Sajidan. (2006). Bioteknologi.Pengolahan Limbah Domestik dengan Aerasi dan Penambahan Bakteri Pseudomonas putida, 3(2), 42-49.
  29. Said, Nusa Idaman dan Sya’bani, Muhammad Rizki. (2014). JAI.Penghilangan Amoniak di Dalam Air Limbah Domestik dengan Proses Moving Bed Biofilm Reactor (MBBR), 7(1), 44-65.
  30. Sharma, Amit Kumar., Pradeepta Kumar Sahoo, dan Shailey Singhal. (2015). IOSR Journal of Pharmacy and Biological Sciences. Influence of Different Nitrogen and Organic Carbon Sources on Microalgae Growth and Lipid Production, 10(1), 48-53.
  31. Sriram, S dan Seenivasan, R. (2012).J Algal Biomass Utln. Microalgae Cultivation in Wastewater for Nutrient Removal, 3(2), 9-13.
  32. Taggar, Monica Sachdeva., Iqbal Singh, dan Sarbjit Singh Sooch. (2015). Impending Power Demand and Innovative Energy Paths. Lipid Accumulation in Microalgae and its Induction Under Different Stress Conditions for Biodiesel Production, 222-229.
  33. Wang, Liang., Min Min, Yecong Li, dkk. (2009). Appl Biochem Biotechnol. Cultivation of Green Algae Chlorella spin Different Wastewaters from Municipal Wastewater Treatment Plant, 162(4), 1174-1186.
  34. Whitton, Rachel., Francesco Ometto, Marc Pidou, Peter Jarvis, dkk. (2015). Environmental Technology Review. Microalgae for Municipal Wastewater Nutrient Remediation: Mechanism, Reactors, and Outlook for Tertiary Treatment, 4(1), 133-148.
  35. Widjaja, Arief., Chao-Chang Chien, dan Yi-Hsu Ju.(2009). Journal of the Taiwan Institute of Chemical Engineers.Study of Increasing Lipid Production from Fresh Water Microalgae Chlorella vulgaris, 40, 13-20.
  36. Wong, Y.K., Y.H Ho, K.C Ho, dkk .(2016). Journal of Marine Biology and Aquaculture. Effect of Different Light Sources on Algal Biomass and Lipid Production in InternalLeds-Illuminated Photobioreactor, 2(2), 1-8. Leds-Illuminated Photobioreactor, 2(2), 1-8.
  37. Yang, Yi-Chun., Jhong-Fu Jian, Chiu-Mei Kuo, dkk.(2017). International Proceedings of Chemical, Biological and Environmental Engineering.Biomass and Lipid Production of Chlorella sp. using Municipal Wastewater under Semi-continuous Cultivation, 101.
  38. Yodsuwan, Natthawut., Shigeki Sawayama, dan Sarote Sirisansaneeyakul. (2017).Agriculture and Natural Resources.Effect of Nitrogen Concentration on Growth, Lipid Production, and Fatty Acid Profiles of the Marine Diatom Phaeodactylum tricornutum, 51, 190-197.
  39. Yoo, Chan., So-Young Jun, Jae-Yon Lee, dkk. (2010). BoresourceTechnology. Selesction of Microalgae for Lipid Production Under High Levels Carbon Dioxide, 101, 571-574.
  40. Zhang, E., Wang B, Wang Q, Zhang S, dan Oh H M. (2008).Bioresource Technology. Ammonia-Nitrogen and Orthophosphate Removal by Immobilized Isolated from Municipal Wastewater for Potential Use in Tertiary Treatment, 99, 3787-3793.