
Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2016 ISSN: 1907 – 5022
Yogyakarta, 6 Agustus 2016

F-16

Extending The Effectiveness of Algorithm
Visualization with Performance Comparison through

Evaluation-integrated Development
Felix Christian Jonathan#1, Oscar Karnalim#2, Mewati Ayub#3

Information Technology, Maranatha Christian University
Bandung, Indonesia

1felix.c.jonathan@outlook.com
2oscar.karnalim@gmail.com

3mewati@itmaranatha.org

Abstract—Since several undergraduate CS students cannot
understand Algorithm topic clearly due to algorithm complexity
and limited class duration, several Algorithm Visualization (AV)
for teaching algorithms have been developed. However, since most
AV only focus on visualizing algorithm steps without mentioning
why that algorithm should be chosen based on given problem,
students cannot improve their understanding further than
Application level (based on Bloom taxonomy). In this paper, we
extend the capabilities of AV by utilizing case-based performance
comparison. Case-based performance comparison aim to let
students differentiate several algorithm and improve their
understanding further. Additionally, we utilize evaluation-
integrated development since the main goal of an AV is not only
technical functionality but also its usability. For our
implementation, we implement these aspects to algorithm for
solving classic problems such as 0/1 knapsack and Minimum
Spanning Tree (MST) problem.

Keywords—algorithm visualization; performance comparison;
algorithm; usability evaluation; evaluation-integrated development

I. INTRODUCTION
Although Algorithm is the core topic of Computer Science

(CS) field, not all undergraduate CS students can understand it
clearly due to its complexity. Furthermore, due to limited time
in class, several students cannot ask lecturer directly for help.
Thus, several Algorithm Visualization (AV) have been
developed to overcome these impediments [1][2][3][4], AV is
an educational tool which visualize how an algorithm works in
more intuitive manner [2]. With the aid of an AV, students are
expected to learn and understand how algorithm works on
certain problem. Students can also replay and pause animation
at particular time in order to clarify their misunderstanding about
certain concept.

However, CS students are not only expected to understand
how an algorithm works but also why a problem should be
solved by particular algorithm [5][6]. The later goal is quite
difficult to achieve since students should be able to differentiate
several algorithms based on their characteristics and determine
which algorithm is the most suitable solution for particular
problem. In order to let student understand this topic, lecturer

should describe efficiency and effectiveness of each algorithm
and explain why an algorithm is better than others in specific
case [7]. Furthermore, based on the fact that practical approach
is more easy to understand than theoritical ones, this approach is
commonly implemented through case-based performance
comparison. The characteristic of an algorithm is described by
comparing it to a baseline algorithm on a specific input data.
Unfortunately, this approach is seldom featured in most AVs.

In this paper, we extend the capabilities of AV by utilizing
case-based performance comparison. Additionally, since the
main goal of an AV is not only technical functionality but also
its usability [8], usability evaluation should not be performed
after the implementation of the system is complete [9].
Therefore, several usability evaluations are also integrated in our
AV development instead of a standard blackbox testing. We
integrate heuristic evaluation, query technique, controlled
experiment, and observational study. For our implementation,
we implement these aspects to algorithm for solving classic
problems such as 0/1 knapsack and Minimum Spanning Tree
(MST) problem [10]. 0/1 knapsack is solved using brute force,
greedy algorithms (greedy by weight, profit, and density),
backtracking, and dynamic programming whereas MST is
solved using brute force, Prim, and Kruskal.

II. RELATED WORKS
For recent decades, researchers had found that visualization

may aid learner to get better understanding about certain concept
(e.g. data trend [11], hierarchical data [12], software [8], and
even for educational materials [2][4][13][14][15]). In CS
education field, visualization is commonly used for explaining
how certain process or an algorithm works. This kind of tool is
commonly called Algorithm Visualization (AV). Nowadays,
most AVs are listed and collected in AV portals like AlgoViz
[16] and VisuAlgo [17]. Both of them are intended to be one-
stop solutions for AV and only differ in AV contribution.
AlgoViz works as third party application which enables all AV
developer to enlist their AV on their site whereas VisuAlgo
creates their own AV. Although web-based AVs are popular,
several AVs are still developed in desktop platform (e.g. AP-
ASD1 [13]) since several cases require high computational

Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2016 ISSN: 1907 – 5022
Yogyakarta, 6 Agustus 2016

F-17

capabilities and not all areas are featured with fast internet
access.

 In spite of there are many avalaible AVs, most of them are
only intended to visualize algorithm steps without mentioning
why that algorithm should be chosen based on a given problem.
Velázquez-Iturbide & Pérez-Carrasco state that case-based
performance comparison may improve student understanding
further about why an algorithm should be chosen [5]. They have
developed GreedEx, which is a tool to aid student in learning
greedy algorithm. By using this tool, learners can explore several
greedy algorithms prepared by lecturer, compare their outputs,
and conclude their algorithm characteristics. They also extend
their GreedEx to GreedExCol which involve Computer-
Supportive Collaborative System (CSCL) [18]. However, their
tool is only focused on case-based performance comparison
without algorithm visualization.

In this paper, we combine both algorithm visualization with
case-based performance comparison in order to improve student
knowledge further. Consequently, several supplementary
features are also required to support that combination. These
supplementary features are input generator, file conversion, and
language preferences. Input generator is utilized since certain
algorithm may require large-sized input data which is quite
difficult to be created manually. File conversion aims to data
portability which enables student to transfer the
input/process/output to another student. Lastly, language
preferences is intended to remove language barrier since our
implementation AV is developed for Indonesian undergraduate
students. To achieve better effectiveness, several usability
evaluations are also integrated in our AV development such as
heuristic evaluation, query technique, controlled experiment,
and observational study. Our implementation AV is named AP-
SA which focus on visualizing algorithm for solving 0/1
knapsack and Minimum Spanning Tree (MST) problem. Since
performance comparison requires high computational
capabilities, AP-SA is developed in desktop platform using C#.

III. DESIGN AND IMPLEMENTATION
Because of usability evaluation should not be performed

after the implementation of the system is complete [9], design
and development of our AV is modified and the phases can be
seen in Figure 1. In the first phase, early design is evaluated
using heuristic evaluation where all core features are analyzed
and inspected. In the second phase, revised design is
implemented and evaluated using query technique in order to
signify missing features from student’s perspective. Finally, the
second attempt of implementation is evaluated using more
sophisticated evaluation such as controlled experiment and
observational study. Their evaluation results are analyzed and
integrated as needed to yield our final AV implementation.
Additionally, a black box testing is always conducted for each
implementation phase on design and development.

A. Design and 1st Implementation

For initial design, we enlist all required features in order to
combine algorithm visualization and case-based performance
comparison. Then, all required features are analyzed and
inspected through heuristic evaluation [19]. Typically, heuristic
evaluation is conducted by second and third author of this paper

since both of us are algorithm lecturers. Based on heuristic
evaluation, several core features have been defined which are:

a) Solving visualization: For each algorithm in each
problem, its solving mechanism should be visualized
and explained step-by-step. This feature allows
students to learn about how certain algorithm works in
certain problem. As we know, this is a common feature
for an AV.

b) Performance comparison: For each input data set in
each problem, several algorithms can be compared
based on optimality, completeness, time complexity,
execution time, and output. With this feature, student
can compare the characteristics of each algorithm,
especially for certain problem. However, memory
complexity is ignored in our performance comparison
since memory usage cannot be determined due the
impact of garbage collector in our development
programming language (C#).

c) Input generator: Since input data size for each problem
may be large, input generator is needed. With input
generator, students can simply start learning without
wasting too much time for preparing input.

d) File conversion: For each algorithm in each problem,
its input, process, and output can be exported from or
imported to raw text or CSV file. This feature aims to
data portability which enable student to transfer the
input/process/output to another student.

e) Language preferences: Since we develop this AV for
Indonesian undergraduate students, this AV should
provide two languages which are English and
Indonesia. Students can choose which language that
fits their necessity.

Figure 1. AP-SA Design and Implementation Phases

Besides core features, several must-have features which are
grounded from best practices [1] are also embedded in our AV.
These features are visualization legend, information visibility
setting, performance information, execution history, flexible

Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2016 ISSN: 1907 – 5022
Yogyakarta, 6 Agustus 2016

F-18

execution control, learner-built visualization, customizable
input data sets, and visualization-oriented explanations. Based
on empirical evaluation, these features are purposed to improve
student understanding further.

In order to improve the effectiveness of AP-SA, we also
integrate four kinds of AV engagement which is based on AV
engagement taxonomy [1]. These AV engagements with its AP-
SA correlated features can be seen in Table I. Viewing is
represented as step-by-step animation in problem-related
solving visualization where student can see how certain
algorithm works on certain problem. Changing is implemented
by providing dynamic input where students can give their
artificial input by hand, generating input through input
generator, or importing input from file. Constructing is provided
by letting students determine how the algorithm is visualized
through visualization setting. Students can determine node
numbering (alphabet, number, or Roman numeral), input edge
color, and the visibility of edge weights. Lastly, Presenting can
be conducted by letting student to present algorithm-related
material with the aid of step-by-step problem-related solving
visualization and performance comparison.

TABLE I. ENGAGEMENT-FEATURE CORRELATION

Engagement Form AP-SA Correlated Feature

Viewing Step-by-step animation in problem-related
solving visualization

Changing Dynamic input

Constructing Visualization setting

Presenting Step-by-step problem-related solving
visualization and performance comparison

For visual representation, each algorithm in AP-SA have
different visualization which details can be seen in Table II. All
0/1 knapsack problem solving except backtracking utilize
dynamic table as its visualization. Dynamic table is a table which
size may be changed dynamically based on its content. On the
other hand, 0/1 knapsack with backtracking is visualized using
search space tree since the idea of backtracking is rooted from
search space concept. MST is visualized using logical graph in
order to adopt the natural behavior of MST input.

TABLE II. ALGORITHMIC STRATEGIES VISUAL REPRESENTATION

Problem Solving Strategy Visual Representation

0/1 knapsack with brute force Dynamic table

0/1 knapsack with greedy algorithm Dynamic table

0/1 knapsack with backtracking Search space tree

0/1 knapsack with dynamic programming Dynamic table

MST with brute force Logical graph

MST with Prim Logical graph

MST with Kruskal Logical graph

B. Query Technique and 2ndImplementation

After 1st Implementation, our AV is evaluated using query
technique where several opinions about different aspects of the
system are collected through questionnaires [9]. Query

technique is conducted to 10 undergraduate students which have
known 0/1 knapsack and MST. Students are asked to give
feedbacks about AP-SA core features which are solving
visualization, performance comparison, file conversion, input
generator, and language preferences. Based on respondent
feedbacks, most revision are considered minor since it does not
affect our major features directly. These revisions are color
changing, button position, textual representation, and video-like
controller. Then, these feedbacks are evaluated and most of them
are implemented in our AV.

C. Controlled Experiment and Observational Study

Controlled experiment is a kind of usability evaluation which
asks learners to complete tasks given by lecturer [9]. Each task
is conducted to provide important information such as
effectiveness, efficiency, ease of use, and other interesting
issues. On the other hand, Observational study is quite similar to
query technique except the way information is collected [9]. In
observational study, lecturer observes how students use the
system and write down every important issue. Both controlled
experiment and observational study are conducted
simultaneously which schedule details can be seen in Table III.
This evaluation involves 13 undergraduate students which have
known 0/1 knapsack and MST wherein respondents are not
informed before about how this evaluation works, so that they
cannot prepare anything. Furthermore, to encourage students for
doing their best, prizes are also given to students with good
grade on each task.

TABLE III. CONTROLLED EXPERIMENT AND OBSERVATIONAL STUDY
TASK SCHEDULES

Task Time-on-task
(minutes)

Pre-test (6 questions) 10

Imitating tutor scenario (9 scenarios) 40
Application-based problem solving (140 short-
answer questions) 30

Questionnaire survey (11 questions) 10

Post-test (6 questions) 10

Pre-test, post-test, and questionnaire survey are utilized to
measure AV effectiveness. Pre-test and post-test measure AV
effectiveness from student perspective, defining how far an AV
can improve student knowledge. Generally, post-test should
yield greater result than pre-test since respondent have learned
something from AV. On the other hand, questionnaire survey is
conducted to measure each effectiveness aspects in detail.
Respondents are given several statements which are required to
be graded based on their perspective.

Pre-test and post-test consist of 6 questions where each
question is related to certain level in Bloom taxonomy [20].
Although both test have similar questions, they differ in
execution timing. Pre-test is conducted before other tasks
whereas post-test is conducted after them. Pre- and post- test
question detail can be seen in Table IV. Knowledge-level
question is the easiest one since the answer of this question can
be found directly on literature whereas Evaluation-level
question is the hardest since student need to know the detail and

Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2016 ISSN: 1907 – 5022
Yogyakarta, 6 Agustus 2016

F-19

implementation of Prim and Kruskal algorithm, especially for
solving MST problem.

TABLE IV. PRE- AND POST-TEST QUESTION LIST

Question Level Question Detail

Knowledge Ask students to determine brute force
characteristic

Comprehension Ask students to arrange algorithm steps for
solving MST using Kruskal’s algorithm

Application Ask students to solve 0/1 knapsack using
greedy algorithm

Analysis Ask students to choose the most efficient
algorithm to solve 0/1 knapsack

Synthesis
Ask students to provide input for 0/1
knapsack so that greedy by weight may yield
optimum result

Evaluation
Ask students to choose Prim or Kruskal to
solve MST. Their answer should be featured
with reasonable argument.

Pre-test and post-test result can be seen in Table V wherein
improvement is represented as percentage of improvement
based on pre-test score. Each question are graded from 0 to 1
inclusively so that overall score for each test is ranged from 0 to
6 inclusively. As seen in Table IV, post-test result is always
greater than pre-test result from both single-question and overall
perspective. Additionally, the improvement between overall
scores is quite high (73,540%). Thus, it concludes that our AV
is quite effective in terms of improving student knowledge. For
Application-level question, its improvement is relatively small
since most respondents pay less attention to small details in
solving visualization.

TABLE V. PRE- AND POST-TEST RESULT

Question Level
Average Score

Pre-test Post-test Improvement (%)

Knowledge 0,307 0,692 125,000

Comprehension 0,115 0,615 433,333

Application 0,653 0,661 1,176

Analysis 0,461 0,538 16,667

Synthesis 0,631 0,938 48,780

Evaluation 0,069 0,438 533,333

Overall Score (Sum) 2,238 3,884 73,540
Overall Score
(Average) 0,373 0,647 73,540

Questionnaire survey is conducted by asking respondents to
grade several AP-SA functionality-related statements based on
their perspective. For each statement, respondent should give an
integer ranged from 1 to 5 inclusively where 1 means very
disagree, 2 means disagree, 3 means neutral, 4 means agree,
and 5 means very agree. This survey consists of 11 statements
which are 2 functionality statements, 1 intuitiveness statement,
1 consistency statement, 1 concept statement, 1 terminology
statement, and 5 core feature statements. As seen in Table VI, 8
of 11 statements yield result greater than 4 which conclude that
these statements are agreed by respondents. However, 3 of them
yield result lower than 4 (though it still higher than 3). These

statements are consistency, file conversion, and language
preference statements. File conversion statement is rated lower
than 4 since input file generated from our AV is in CSV format
which may not descriptive enough for some respondents. Both
consistency and language preference statements are rated lower
than 4 due to inconsistent language translation on AP-SA during
evaluation. We also ask students to write down any feature-
related feedback about AP-SA. These feedbacks are categorized
as follows, inconsistent language translation, UI look and feel,
and more-simple input representation. Inconsistent language
translation occurs since several terms are still not translated.
However, all inconsistent translation have been listed and
corrected in final implementation of AP-SA. UI look and feel
feedback is resulted since our AV utilize white as its background
color (which is too bright for a respondent). Input representation
feedback is resulted since AP-SA utilize adjacency matrix as
input for MST problem. Both feedbacks will be implemented in
next research since both of them require considerable effort and
occurs after major implementation (2nd implementation).

TABLE VI. SURVEY STATISTICS

Statement Average
Score

AP-SA functionality may aid learner to learn algorithm
for solving 0/1 knapsack 4,615

AP-SA functionality may aid learner to learn algorithm
for solving MST 4,692

AP-SA has intuitive UI 4,076

Layout and functionality of AP-SA are consistent 3,384

AP-SA is effective to learn the concept of algorithm 4,461
Terminology and materials are commonly used in
undergraduate course 4,692

Step-by-step visualization may enchance learner
knowledge of algorithm to solve specific problem 4,769

Performance comparison may help learner to
differentiate several algorithm 4,153

Input generator may simplify learning since students are
not required to wasting time to create input by hand. As
we know, input size may be large.

4,692

File conversion may aid learner in terms of data
portability 3,923

Language preference may aid learner to learn in their
native language 3,461

Average Score 4,265

Based on survey result, the impact of core features are sorted
descending as follows: solving visualization, input generator,
performance comparison, file conversion, and language
preferences. Solving visualization get the highest score since it
is considered as the core aspect of an AV. Although input
generator is a supplementary feature for performance
comparison, it still yield higher score than performance
comparison since giving input is a compulsory step before
conducting other features. File conversion and language
preferences yield low result among core features since they are
not directly related to algorithm.

Imitating tutor scenario and application-based problem
solving are utilized to measure AV ease of use and to observe
student behaviour. Besides, both tasks are also utilized to
introduce AP-SA features. Imitating tutor scenario aims to
introduce it at Knowledge and Comprehension level whereas

Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2016 ISSN: 1907 – 5022
Yogyakarta, 6 Agustus 2016

F-20

application-based problem solving introduce it at higher level.
By introducing AP-SA features, students are expected to give
more objective results on questionnaire survey.

For imitating tutor scenario, students are asked to reproduce
similar scenario as described by tutor before. This experiment
consists of 7 scenarios which are based on AP-SA core features
(2 solving visualization scenarios, 2 performance comparison
scenarios, 1 input generator scenario, 1 file conversion scenario,
and 1 language preference scenario). Since student completion
time for each task in imitating tutor scenario is gradually
shortened, it can be concluded that several respondents require a
few minutes to adapt with AP-SA, but they can use it well at the
rest of the time.

On the other hand, application-based problem solving is
conducted by asking students to answer 140 simple questions
which classified to 9 categories, 4 for MST problems (brute
force, Prim, Kruskal, and algorithm comparison) and 5 for 0/1
knapsack problems (brute force, greedy algorithm,
backtracking, dynamic programming, and algorithm
comparison). During this test, most students can answer all
questions easily. Furthermore, they also can complete it faster
than allocated time. However, to check whether students answer
it seriously or not, we also grade their answer which averaged
result is 93,384%. Since this averaged result is quite high, we
can conclude that students answer it seriously. Due to the fact
that students can complete their task faster than expected, it can
be concluded that AP-SA is quite easy to use. This conclusion is
also deducted from the result of functionality and intuitiveness
statements on survey.

Based on both evaluations, we also collect several student
comments which are stated when they are doing the tasks.
However, all comments are similar with their feedbacks on
questionnaire which requires no additional analysis in this
section.

D. 3rdImplementation

The main window of AP-SA can be seen in Figure 2 and
adapted from our previous AV, AP-ASD1 [13]. It consists of
several components such as title panel (A), module selection (B),
input panel (C), visualization panel (D), and visualization
explanation panel (E). They are represented in Figure 2 as A to
E respectively. Title panel consists of several features such as
title, video-like animation controller, language selection,
algorithmic strategies problem explanation, and tutorial.
Students can select which module they wish to learn from
module selection. After selecting a module, students can give,
generate, or import certain input and configure visualization
setting in input panel. Finally, students can start to learn through
animation visualized in visualization panel with its explanation
showed in visualization explanation panel.

The example of problem-solving visualization using AP-SA
can be seen in Figure 3 and Figure 4. Figure 3 represents
problem-solving visualization of 0/1 knapsack problem with
backtracking whereas Figure 4 represents problem-solving
visualization of MST with Prim’s algorithm. As seen in Figure
3 and Figure 4, visualization explanation panel is split into two
sub-panels where left panel represents textual explanation and
the right one represents the best solution so far.

Figure 2. AP-SA Main Window

Figure 3. Problem-solving Visualization of 0/1 Knapsack Problem with

Backtracking

Figure 4. Problem-solving Visualization of MST with Prim’s Algorithm

The example of performance comparison using AP-SA can
be seen in Figure 5 which represents the result of comparing
several algorithms for solving 0/1 knapsack problem. Time
elapsed and the result for each algorithms are shown in
visualization panel whereas its supplementary information (time
complexity, optimality, and completeness) can be seen in
visualization explanation panel.

IV. CONCLUSIONS
Based on our research, several conclusions can be stated

which are:

a) Performance comparison in AV may enchance student
knowledge about algorithm. This statement is
concluded from the result of performance comparison

Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2016 ISSN: 1907 – 5022
Yogyakarta, 6 Agustus 2016

F-21

statement in questionnaire which yields fairly good
result (4,153 of 5).

b) Integrating usability evaluation in AV design and
development may enchance AV’s impact since the
main goal of an AV is user-oriented and requires many
feedbacks from users. Feedbacks can be collected
either implicitly (e.g. pre-test and post-test, imitating
tutor scenario, and application-based problem solving)
or explicitly (e.g. query technique and questionnaire
survey).

c) Based on controlled experiment and observational
study, it can be concluded that our implementation AV,
AP-SA is easy to use and quite effective to improve
student knowledge about algorithm. Additionally, our
core features also fit student need based on survey
result.

Figure 5. Performance Comparison in 0/1 Knapsack Problem

V. FUTURE WORK
For further research, we intend to measure the impact of AV

engagement described by Naps and determine which
engagement may fit undergraduate students in Indonesia.
Furthermore, we also intend to determine the most
understandable visual representation for AV. From
implementation AV perspective, we will integrate UI look and
feel and input selection in further research.

REFERENCES
[1] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C.

Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger and J. A.
Velázquez-Iturbide, "Exploring the role of visualization and engagement
in computer science education," in ITiCSE-WGR '02 Working group
reports from ITiCSE on Innovation and technology in computer science
education, New York, 2003.

[2] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart, S.
Ponce and S. H. Edwards, "Algorithm Visualization: The State of the
Field," ACM Transactions on Computing Education (TOCE), vol. 10, no.
3, 2010.

[3] E. Fouh, M. Akbar and C. A. Shaffer, "The role of visualization in
computer science education," Computers in the Schools:

Interdisciplinary Journal of Practice, Theory, and Applied Research,
vol. 29, no. 1-2, pp. 95-117, 2012.

[4] S. Halim, Z. C. Koh, V. B. H. Loh and F. Halim, "Learning Algorithms
with Unified and Interactive Web-Based Visualization," Olympiads in
Informatics, vol. 6, pp. 53-68, 2012.

[5] J. Á. Velázquez-Iturbide and A. Pérez-Carrasco, "Active learning of
greedy algorithms by means of interactive experimentation," in ITiCSE
'09 Proceedings of the 14th annual ACM SIGCSE conference on
Innovation and technology in computer science education, New York,
2009.

[6] "Curriculum Guideliness for Undergraduate Degree Programs in
Computer Science," ACM and IEEE Computer Society. The Joint Task
Force on Computing Curricula: Computer Science Curricula 2013, 2013.
[Online]. Available: http://www.acm.org/education/CS2013-final-
report-pdf.

[7] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(3rd Edition), Prentice Hall, 2009.

[8] C. D. Hundhausen, S. A. Douglas and J. T. Stasko, "A Meta-Study of
Algorithm Visualization Effectiveness," Journal of Visual Languages &
Computing, vol. 13, no. 3, p. 259–290, 2002.

[9] O. Kulyk, R. Kosara, J. Urquiza and I. Wassink, "Human-Centered
Aspects," in Human-Centered Visualization Environments, Springer-
Verlag, 2007, pp. 13-75.

[10] R. Sedgewick and K. Wayne, Algorithms (4th Edition), Princeton, 2011.
[11] G. Robertson, R. Fernandez, D. Fisher, B. Lee and J. Stasko,

"Effectiveness of Animation in Trend Visualization," IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1325 - 1332,
2008.

[12] Y. Tu and H.-W. Shen, "Visualizing Changes of Hierarchical Data using
Treemaps," IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1286 - 1293, 2007.

[13] L. Christiawan and O. Karnalim, "AP-ASD1 An Indonesian Desktop-
based Educational Tool for Basic Data Structures," Jurnal Teknik
Informatika dan Sistem Informasi (JuTISI), vol. 2, no. 1, 2016.

[14] T. L. Naps, "JHAVE: Supporting algorithm visualization," IEEE on
Computer Graphics and Applications, vol. 25, no. 5, pp. 49-55, 2005.

[15] V. Karavirta and C. A. Shaffer, "JSAV: the JavaScript algorithm
visualization library," in The 18th ACM conference on Innovation and
technology in computer science education, New York, 2013.

[16] "AlgoViz.org : The Algorithm Visualization Portal," [Online].
Available: http://algoviz.org/. [Accessed 7 12 2015].

[17] S. Halim, "VisuAlgo," [Online]. Available: http://visualgo.net/.
[Accessed 12 5 2015].

[18] O. Debdi, M. Paredes-Velasco and J. Á. Velázquez-Iturbide,
"GreedExCol, A CSCL tool for experimenting with greedy algorithms,"
Computer Applications in Engineering Education, vol. 23, no. 5, pp. 790-
804, 2015.

[19] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide, "A Survey of
Successful Evaluations of Program Visualization and Algorithm
Animation Systems," ACM Transactions on Computing Education
(TOCE) - Special Issue on the 5th Program Visualization Workshop
(PVW’08), vol. 9, no. 2, 2009.

[20] B. Bloom and D. Krathwohl, Taxonomy of Educational Objectives : the
Classification of Educational Goals Handbook I: Cognitive Domain,
Addison Wesley, 1956.

