
E-89 

VISUALIZATION OF STRESS TENSOR FIELD USING CUTTING PLANE TECHNIQUE  
(IMPLEMENTED IN VISUALIZATION TOOLKIT (VTK)) 

 
 Sugeng Waluyo 

 
Balai Besar Teknologi Kekuatan Struktur (B2TKS) Badan Pengkajian dan Penerapan Teknologi (BPPT) 

Kawasan Puspiptek Serpong Gd. 220 Telepon (021) 7560562 ekst. 1063 
E-mail : sugeng_waluyo@webmail.bppt.go.id, sugeng_walj@yahoo.com 

 
Abstrak 

 
One of the most challenging tasks in scientific visualization is how to visualize 3-D stress tensor 
field in intuitive and uncluttered images. Many techniques e.g., glyphing and hyperstreamline, 
have been developed to visualize the stress tensor field, however, they can be used only for 
specific applications. Within this work, another technique called cutting plane will be used and 
implemented in Visualization Toolkit (VTK). The idea behind development of tensor 
visualization using cutting plane comes from the functionality of vtkCutter class in VTK library 
which cuts a 3-D object by reducing a 3-D cell to a cut surface. Then, by using data set attribute 
at each point on the cut surface, i.e., stress tensor, and manipulating it to obtain a traction 
vector on the cut surface, normal stress and shear stress with respect to cut surface should be 
easily computed.  
 
Keywords:  scientific visualization, stress tensor, cutting plane, VTK 
 

 

INTRODUCTION 
In general, visualization is understood as a method to 
visually represent information content within a set of 
large scale multidimensional data. It offers capability 
to see the unseen information inside a data set. For 
science and engineering purpose, this is known as 
scientific visualizations. Recently, scientific 
visualizations are already revolutioning the way of 
analysis and design because they are cheaper and more 
understandable than an experiment in many cases. 
Meanwhile, a trend in computational solid mechanics 
is that simulations are more entirely performed with 
volume-oriented continuum models. For finite element 
method (FEM), it means that the structure are not 
longer described by dimensionally reduced system, like 
beam or plate models, however, they are discretized by 
three dimension (3-D) element, e.g., hexahedral and 
tetrahedral elements. 
One of the most challenging tasks in scientific 
visualization is how to visualize 3-D stress tensor field 
in intuitive and uncluttered images. Many techniques 
e.g., glyphing and hyperstreamline, have been 
developed to visualize the stress tensor field, however, 
they can be used only for specific applications. Within 
this project, another technique called cutting plane will 
be used and implemented in Visualization Toolkit  
(VTK), i.e., an open source, freely available software 
system for 3-D computer graphics, image processing, 
and visualization based on C++ class library.  

 
The idea behind development of tensor visualization 
using cutting plane comes from the functionality of 
vtkCutter class in VTK library which cuts a 3-D object 
by reducing a 3-D cell to a cut surface (see Fig.1). 
Then, by simply using data set attribute at each point 
on the cut surface, i.e., stress tensor, and manipulating 
them to obtain a traction vector on the cut surface, 
normal stress and shear stress with respect to cut 
surface should be computed easily (see Fig.2).  

 
Figure 1.   The cutting processes using marching 

cube show several possibilities to obtain 
cut surfaces from 3-D objects numerically 



Prosiding Seminar Nasional Teknoin 2008 
Bidang Teknik Elektro 

E-90 

 
Figure 2.   Diagram of traction vector ( )nt  and stress 

state ijσ  at point P which is located on the 
specific surface. Here, subscripts i and j 
are defined by x, y, and z  

VISUALIZATION OF STRESS TENSOR 
FIELD  
In solid mechanics, a stress tensor is commonly 
described as a matrix  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

σσσ
σσσ
σσσ

=σ=

zzzyzx

yzyyyx

xzxyxx

ijσ                 (1) 

where subscripts x, y, and z are oriented based on user 
defined coordinate system (see Fig. 2) and subscript i 
and j are tensor components. Using this matrix, one can 
obtain the invariants, eigenvalues, and eigenvectors of 
it. These are properties of the stress tensor in (1) which 
are invariant under a change of coordinate system.         
Nowadays, at least two methods are commonly used to 
visualize tensor, i.e., glyph and hyperstreamline. 
Glyphing is a visualization technique which represents 
data by using geometric symbols like oriented cones or 
spheres to show principle stresses in 3-D (see Figs. 3a 
and 3b). Here, for each tensor matrix, the eigenvalues 
and associated eigenvectors are sorted to determine the 
major, medium, and minor eigenvalues and 
eigenvectors. In case of 2nd order tensor, those values 
will be three axes of ellipsoid. The concept of 
hyperstreamline is quite similar to glyphing. While 
glyphing visualizes the eigenvalues and eigenvectors at 
discrete points, hyperstreamline connects all of them 
through points and visualizes them similar to 
conventional streamline used to describe vector field 
(see Fig. 4). 
Either glyphing or hyperstreamline technique was 
developed in order to visualize general 2nd order tensor 
field, e.g., magnetic field, gravity field and stress in 
fluid, which is not commonly used in solid mechanics. 
Solid mechanics community usually work with stress 
distribution over a length or an area and the 
corresponding force on that length or area. They 
normally require information of stress distribution only 
for specific locations of a model not for overall model. 
Therefore, in this work, a new approach called cutting 
plane technique is introduced as following. 
 

 
 
     (a)        (b) 

Figure 3.   Glyphing technique using (a) sphere and 
(b) cone geometric symbol representation 

 
 

Figure 4.   Hyperstreamline  

Assuming that a solid model is built by a volume inside 
boundary surfaces, the cutting plane will cut the model 
along the volume using implicit function  
 A)z,y,x(F =                              (2) 
where A  is a constant determining the cutting position 
with respect to 3-D volume as shown in Figure 5 as 
parallel lines. Numerical implementation of analytical 
approach in (2) can be done by approximating the 
analytical volume in Figure 5 with volume of small, 
but finite, cubes. 

 
Figure 5.   Implicit function A)z,y,x(F =  for 

arbitrary value of A is shown by parallel 
lines 

Then, by checking the possibility of the cutting planes 
cut the single cube as shown in Figure 1, one can built 
2-D planes through a 3-D volume or a solid model. 



ISBN : 978-979-3980-15-7 
Yogyakarta, 22 November 2008 

E-91 

IMPLEMENTATION OF THE CUTTING 
PLANE TECHNIQUE IN VTK 
VTK is an open source, freely available software 
system for 3-D computer graphics, image processing, 
and visualization used by thousands of researchers and 
developers around the world. VTK consists of C++ 
class library, and several interpreted interface layers 
including Tcl/Tk, Java, and Python.  
Based on guidances and rules on how to extend VTK 
classes efficiently, this work will be done only in 
Microsoft Visual C++ 6.0 as programming language. 
The advantage of using C++ as development language 
will typically result in smaller, faster, and more easily 
deployed applications than most other language.          
A development using C++ also has an advantage that 
one does not need to compile any additional support 
for Tcl, Java, or Python. 

 
Figure 6.   Type of data set supported by VTK (see 

VTK User’s Guide) 

Besides the cube geometry, VTK supports several 
geometry data which is commonly used in 
visualization (see Fig. 6) as well. Except a single grid 
data, each of data consists of a network of lines which 
connects two grid points. In practice, programmers put 
data attribute information, e.g., coordinate, velocity, 
temperature, and stresses in the grid points. 

 

 
Figure 7.   Hierarchy of the vtkModCut (see VTK 

User’s Guide) 

Using interpolation, the value of data attribute between 
grid points can be approximated. This idea is used for 
transferring data attribute from its original location 
onto cutting plane.      

To start with, a new class library is proposed which 
represents the cutting plane. This class is called 
vtkModCut and derived directly from 
vtkDataSetToPolyDataFilter class which has capability 
to change the data set to polygonal data. The 
vtkDataSetToPolyDataFilter class has parent classes 
with their own functionality (see Fig. 7). It is obvious 
from Figure 7 that vtkModCut is independent from 
existing cutting class in VTK called vtkCutter though it 
is a modification of vtkCutter.     
Furthermore, a stress tensor can be represented onto a 
surface by a traction vector t(n)  simply by 

multiplication of stress tensor matrix ijσ  and normal 
vector n  of the surface as 
 iiji nT σ= .            (3) 
Hence, the normal stress vector σ  on the surface is 
computed by dot product of t(n)  and n  (see Fig. 8). 
Then, the shear stress vector τ  is normally computed 
by simply projecting of the traction vector onto the 
surface. However, those approach are difficult to be 
implemented here for arbitrary surface form because, 
in VTK, tensor is very often associated as a data 
attribute of point (see Fig. 8) while normal vector is a 
property of a surface.  

S

t(n)

A

B

C

D

nS

t(n)

t(n)

σ

τ

nB

 
Figure 8.   In VTK, a normal vector is defined 

directly at a surface e.g., Sn  at surface S, 
and tensor attributes is a property of point 
or grid, e.g., point or grid B 

There are two methods which are normally used to 
solve the problem above. First, a normal vector at a 
point, e.g., shown as Bn  in Figure 8, is defined as 
average of normal vectors of cells around that point. 
Second, cell data attribute, i.e., stress tensor is defined 
as average values of stress tensor at points around the  
cells. At the first glance, the second method is easier 
because, in VTK, there is a function which returns 
number of point belongs to a cell.  Unfortunately, this 
method leads to bad visualization result, i.e., uniform 
colour in a cell, when direct colouring method is 
applied during rendering because VTK considers only 



Prosiding Seminar Nasional Teknoin 2008 
Bidang Teknik Elektro 

E-92 

interpolation of colour among points not cells. 
Whereas, the first method, which is used in this work, 
should be a better choice as long as one knows how 
many cells belong to a point.  
Instead of walking through points to find their 
associated cells, Figure 10 shows an algorithm which 
walks through cells and collects normal vector of the 
cells which shares exactly the same points. Thus, the  
normal vector at the point is computed by summation 
of normal vector at the point collected from each 
appropriate cells divided by total number of cells 
associated with that point which is indicated by the 
counter (see Fig. 10). For example, assuming a point 
with ID=1 belongs to four cells around it. Then, normal 
vector at that point is given by summation of each 
component of normal vectors of that four cells divided 
by four. The algorithm has been implemented in 
vtkModCut class 

 
Figure 10.   Procedure to obtain normal vector at a 

point (see VTK User’s Guide book for 
explanation of the parameters). 

RESULTS 
Two examples are presented here to give an illustration 
how the vtkModCut works (see Fig. 11). However, 
those of examples are intended to show realistic results 
of visualization only. Additional testing procedures 
should be conducted carefully to give a guarantee that 
the value of normal stress can be correctly proved in 
the sense of solid mechanics point of view. 
The first example is a cube loaded by a point load as 
shown in Figure 11. The load is located in the middle 
of top surface while the opposite surface is fixed. Finite 
element modelling and simulation had been done using 
3-D solid element in separate finite element software. 
Finally, the stress values are modified and transferred 
to VTK standard input format. The second example is a 
T-bar with distributed moment applied at top most of 
the bar while left end side is fixed (see Fig. 11). Using 
the same procedure as the cube example, the result for 
different cutting plane position, can be seen in Figure 
13. 

 
 (a)             (b) 

Figure 11.   Two examples of implementation of the 
cutting plane technique in VTK i.e., (a) a 
cube with point load and (b) a T-bar with 
distributed moment. 

Results from the first example are shown in Figure 12 
with different positions of the cutting plane. Here, 
using the cutting plane, one can observe distribution of 
normal stress at any distances from loaded location 
which seems realistic. As the distance is closer to the 
location of point load, the influence of load is more 
intense which is commonly produced by solid 
approach in a point load simulation. Furthermore, in 
second example, a unique distribution of normal stress 
due to bending can be seen at bottommost of the 
cutting plane (see Fig. 13). A distribution from 
negative or compressive stress state to positive or 
tensile stress state has been visualized nicely.    
 

 
(1) 

 

 
(2) 

 



ISBN : 978-979-3980-15-7 
Yogyakarta, 22 November 2008 

E-93 

 
(3) 

Figure 12.   Different location of cutting plane inside a 
cube with a point load, i.e., positions (1), 
(2), and (3), shows the concentration of 
normal stress  

 
 

(1) 
 

 
 

(2) 
 

 
 

(3) 

Figure 13.   A unique distribution of normal stress 
along thickness of the left side of bar is 
shown here with different positions of the 
cutting plane, i.e., positions (1), (2), and 
(3) 

CONCLUDING REMARKS 
The cutting plane technique has been implemented in 
VTK successfully. The implementation is represented 
in a C++ class called vtkModCut. Two examples are 
given here which produce quite nicely visualization 
results, i.e., concentration of stress due to a point load 
and a unique stress distribution by bending. 

REFERENCES 
[1] The VTK User’s Guide Version 4.4,    Kitware, 

Inc. 2004. 
[2] Hesselink, L., Levy, Y.,  and Lavin, Y. (1997). 

The Topology of Symmetric, Second-Order 3D 
Tensor Fields. IEEE Trans. on Visualization and 
Computer Graphics, Vol. 3, No. 1, January-March  

[3] http:// www.vtk.org 
[4] Waluyo, S. (2007). Advance Visualization of 

Continuum Model Using Visualization Toolkit 
(VTK) . Software Lab. Report, TU München, 
Germany (supervised by Andreas Niggl and 
Holger Heidkamp). 


