
EVALUATING TRUSTWORTHINESS OF SOFTWARE COMPONENT

Beni Suranto

Department of Informatics, Faculty of Industrial Technology, Universitas Islam Indonesia

Jalan Kaliurang Km.14,5 Sleman, Yogyakarta 55184

beni.suranto@uii.ac.id

ABSTRAK

Makalah ini membahas tentang konsep keterpercayaan komponen perangkat lunak

yang merupakan salah satu pertimbangan utama bagi pengembang perangkat lunak dalam

mengimplementasikan metode pengembangan perangkat lunak berbasis komponen. Pada

bagian awal makalah, penulis menjelaskan mengenai konsep penggunaan ulang perangkat

lunak dan kaitannya dengan keterpercayaan komponen perangkat lunak. Selanjutnya, bagian

inti makalah membahas secara detail mengenai metode pengujian komponen perangkat

lunak dan 4 (empat) metode yang dapat digunakan untuk mengevaluasi tingkat

keterpercayaan dari komponen perangkat lunak. Di akhir makalah, penulis memberi

gambaran mengenai proses seleksi komponen perangkat lunak pada domain industri.

Kata kunci: penggunaan ulang perangkat lunak, pengembangan perangkat lunak berbasis

komponen, keterpercayaan komponen, seleksi komponen

1. COMPONENT-BASED SOFT-

WARE ENGINEERING

Today, software has an important role

in many industrial systems. Software

provides added value for products and can

be used to effectively reduce the

production cost. The use of software is

now essential in manufacturing, medical

systems, automotive, and process control

industries. Generally, products in the

current industry are systems consisting of

software and hardware. The software part

is a software system incorporating many

software programs or applications that

must cooperate to provide the intended

functionalities without any defects. The

most critical concern for software

organizations is capability to deliver a

software product on time, within budget,

and to an agreed level of quality. In this

context, underestimating software costs

will lead to detrimental effects on the

quality of the software product and thus on

a company’s business reputation and

competitiveness. On the other hand, the

opportunities to funds in other projects

will be missed when the company

overestimates the software

cost(Andreessen, 2011).

Component-based Software Enginee-

ring (CBSE) is a popular concept in

software engineering field which

represents a technology for rapid assembly

of flexible software systems. CBSE relies

on software reuse and combines elements

of software architecture, modular software

design, software verification, configuration

and deployment. Actually, software

development approach with CBSE

emerged from the failure of object-

oriented development to support effective

software reuse. Components can be

considered to be standalone service

providers and are more abstract than object

classes. In CBSE, a software product are

built as an assembly of software

components already developed and

prepared for integration. The main

advantages of the this approach include

increased productivity, effective

management of complexity, a wider range

of usability and extendibility, a greater

degree of consistency, and reduced time to

market(Kaur & Mann, 2010).

CBSE adopts the component-based

engineering method from other

reengineering fields (e.g. mechanical or

electrical engineering). In context of

CBSE comes Component-Based

Development (CBD) with the main task is

to build systems from software units or

components which are already built. By

composing a system from prebuilt or

existing components, this development

method reduces both production cost and

production time. Also, the already prebuilt

components can be reused in many

different software systems(Panunzio &

Vardanega, 2009).

To realize the great benefits of CBD

technology, it is necessary to have

software components that can be easily

reused and can be integrated in a

systematic way. As CBSE is based on the

concept of component. The most

commonly used definition for software

component was proposed by Szyperski et.

al. (2002):

“A software component is a unit of

composition with contractually specified

interfaces and explicit context

dependencies only. A software component

can be deployed independently and is

subject to composition by third parties”.

For software engineers, the main

challenge is reusing software components

fot building the intended systems. A

software component has to maintains its

functionality as it deployed and executed

after installation in different systems.

Software engineers have to use a

mechanism for connecting software

components at run-time or dynamically. In

the other words, a software component

must be independently deployable. This

approach allows software engineers to use

the software components as and when

required for maximizing the utilization of

resources(Shareef & Pandey, 2012).

2. SOFTWARE COMPONENT

TESTING

It is sure that where will be great

benefits in effectiveness of project

development when component based

software engineering techniques are used,

however, both reliability of selected

components and safety when components

communicate with each other should be

concerned. Moreover, if software defects

are discovered in the late part of life cycle

of software development, great cost

including time, labour and budget will be

spent on correcting those software faults

with no promise that those faults will be

fixed perfectly. Thus testing in component

based software engineering should be

implemented during both individual

component development and component

integration (Bertolino, 2007).

On 4th June 1996, the Ariane 5 rocket

veered off and exploded disastrously 40

seconds after initiation of its flight

sequence, costing nearly $370 million

directly. An Inquiry Board led by

Professor J. L. Lions was convoked by the

Chairman of CNES and the Director

General of ESA to identify the reasons for

the launch failure(Lann, 2007). One month

later, an analysis report presented by the

team demonstrated that insufficient

software testing when software engineers

reused software from the Ariane 4 as a

component cause this explosion. The

development team did not test the value of

horizontal velocity which the Ariane 5

could reach 40 seconds after initiation to

check whether that value might be out of

calculation boundary set in the software of

the Ariane 4 after changing the ignition

hardware into a high initial acceleration

system. Consequently, an exception failed

to be caught when an out of calculation

boundary value was past to the software

method, which led to the crash of the

Ariane 5 system catastrophically. The

analysis report strongly recommended that

entire simulations should be fully tested

before any real mission. Unfortunately,

software engineers omitted those test

cases, which led to the launch

failure(Lions, 1996).

There are three steps through which

component based software should be

tested. First, each component should be

tested fully when it is developed as an

individual unit. Secondly, integration

testing should be applied on subsystems

which consist of no-defect-found

components as single items after unit

testing. Thirdly, once all the subsystems

have been integrated into a whole system,

the system should be tested fully and

sufficiently to check whether all the

components work well together in terms of

their requirements. Additionally, systems

which are developed by using the

component based software techniques can

also be tested by some other testing

methodology such as stability testing,

reliability testing, robustness testing,

loading testing and so on which may all be

helpful in identifying the quality of the

systems.

The source codes of component may

not be available in many circumstances

such as using in-house components or

purchasing commercial off-the-shelf

components (Bertolino, 2007).

Consequently difficulties may be brought

into component testing because those

software engineers who hardly familiar

with the inner-construction of components

can only use black-box testing instead of

white-box testing, which implies that test

cases may not be chosen properly or

sufficiently. This in turn means that

component software testing techniques

should cover the area of non-availability of

source code.

Garlan et. al (1995) identified several

problems when they reuse some

components to generate a new system. In

their report, they demonstrated that there

were a lot of troubles while they tried to

integrate

components together; sometimes

rework on the components might cost

significantly to make sure that those

components met their requirements and

worked properly as a group. Moreover, the

authors also reported that a lot of work

should be done to test and maintain the

integrated system especially when they

attempted to generate appropriate and

sufficient test cases because of the low

level understanding of some reused

components. Consequently, the stability

and reliability of component based

software can be greatly influenced and

hardly controlled.

3. COMPONENT TRUSTWORTHI-

NESS EVALUATION METHODS

3.1. Reference Model for

Trustworthy Proof

By definition, Trusted component is

“a reusable element of software, it has a

quality character which is designed and

guaranteed”(Alvaro, et. al, 2010).

According to this definition, software

engineers have a problem about how they

guarantee and evaluate the trustworthiness

of components.

JiuSong et. al (2009) propose a

reference model which can be used to

investigate trustworthy proof in

component-based development process.

They define trustworthy proof as “all the

real facts that is with a specific form,

certificated and used to prove the case of

components’ quality”. They also define

proof item as “the assembly of all the

trusted components’ trustworthy proof”.

Based on the proposed reference

model, there are two level of trustworthy

proof: the first level proof item and second

level proof item. second level proof item is

a smaller granularity of first level.

Trustworthy proof have some specific

characters: objectivity (must be an

objective fact and independent of

stakeholders’ will), relevance (there must

be significant a relationship between proof

and quality of the component that needs to

be verified), availability (the proof can be

evaluated by a spesific procedure), and

diversity (the proof can exist in many

different forms).

Considering from the view of software

development life cycle, the process of

developing the components affect the

trustworthy of components. The

trustworthy of components then will be

reflected through its character and will

define the user satisfaction. So, from this

perspective, there are three aspect of the

trustworthy proof to verify trusted

components: trustworthy proof of

development phase (to provide and ensure

the trusted components during the process

of componentsdevelopment, requirement

analysis, design and realize), submission

phase (to verify whether components are

correctly usable), application phase (verify

the quality components in the run-time

environtment). The proposed trustworthy

proof reference model is shown in Fig. 1.

Figure 1. The trustworthy proof reference model(JiuSong, 2009)

There are two method defined in this

model which can be used to obtain

trustworthy proof in order to verify the

trusted components:

a. Static obtaining methods: This

method relatively easy to achieve,

involves in more artificial

participations (user feedback,

expert review, the third party

assessment).

b. Dynamic obtaining method: This

method is more difficult to achieve,

involved in fewer artificial

participations (process simulation,

automated testing, QoA

monitoring).

3.2. A Formal Verification Model to

Verify The Trustworthiness of

Component Interface

When software engineers want to

develop component-based systems, they

consider components as black boxes, they

can’t access the inner structure of

components. Software engineers can only

access components information from their

interfaces. According to this situation,

specification of component interface need

to be defined correctly, otherwise software

engineers will have some problems when

they want to integrate component to their

system. Also, the correctness of

specification of component interface has

strong relationship with the effectiveness

of the reusability of the system.

Dan & Jin (2009) propose a model

which can be used as the basis for the

verification mechanism of the

trustworthiness of software components.

They combine two powerful tools B

Method and UML to model the component

interfaces so the component interfaces can

be correctly verified.

The B method is a popular approach

to specify system based on set theory that

consider the safety and the reliability

aspect. This method using some

mathematical proofs for the basis of three

main processes in the implementation

stage of software development

(specification, design, and coding) to

ensure that the system is coherent and

fault-free. One of the main objectives of B

method is to formalize specification. This

objective is significantly related with the

requirement of correct specification of

components interfaces. One of the

advantage of using B method is that it uses

abstract machine notations to model the

component interfaces, so we can

understand more easily about the

specification of the component interface.

Also, there are some powerful tools for B

method (AtelierB, B-Toolkit, BEditor).

The first step to develop formal

verification model is describe the

component interface using UML class

diagram and state diagram. Those

diagrams can intuitively inform the detail

information of component interface, from

both syntactic and semantic aspect. From

UML class diagram and state diagram of

component interface then we use B

abstract machine to define the formal

specification of component interface. The

final step of this method is verify the

trustworthiness of component connection

using B refinement mechanism [12].

In component-based software

methodology, component have two kinds

of interface to communicate with each

other: required interface (to define what

interfaces component requires from other

components) and provided interface (to

define what interfaces component can be

accessed by another components). An

interface need to be specified based on its

data model and its operations. One tool

that can be used to model the component

interfaces is UML. Nowadays, UML is a

de facto standard notation in object-

oriented system development. The

interface data model can be described by

UML class diagram according to the

definitions of its attribute and its operation.

We can consider component protocols as a

state set and we can use a UML state

diagram to describe the usage protocol of

component interfaces according to some

related informations (pre and post

conditions of the operation, call sequence

of operations, transition rule of component

state). The class diagram for a “Steam

Boiler control system” benchmark

problem is shown in Fig. 2. And the state

diagram is shown in Fig. 3.

Figure 2. A class diagram for steam boiler

 control system (Dan & Jing, 2009)

Figure 3. A state diagram for steam boiler

 control system(Dan & Jing, 2009)

From the class diagram and state

diagram we can specify an interface using

B abstract machine notation to describe

both the static and the dynamic

information of component interface. The B

machine of the interface for the steam

boiler control system is shown in Fig. 4.

Figure 4. A B machine for steam boiler

 control system(Dan & Jing, 2009)

In this method, the most important

criteria for the trustworthiness of the

connection between two components is

compatibility of their interfaces. The

compatibility aspect is considered on three

levels: syntactic level (the description of

static information of component interface),

semantic level (the description of dynamic

behaviors of component interface

operations), and protocol level (the

description how to call the component

interface operations).

In B method, refinement technique is

used to create mathematical model of the

system based on its abstract model. We

can verify the compatibility of two

component interfaces by verify the abstract

machine of them. If we can prove that the

“provided interface” machineis a correct

implementation (i.e. refinement) of the

“required interface” machine we can say

that both of them are compatible each

other. The abstract machine and the

corresponding refinement is shown in Fig.

5.

Figure 5. An abstrat machine and

refinement for steam boiler control

system(Dan & Jing, 2009)

3.3. Thrustworthiness Evaluation

Method Using Entropy

Once software engineers finish their

code, they need to perform design review

to evaluate the code and remove defects in

their code. Bacchelli & Bird (2013) found

that almost all the software engineers

included finding defects as one of the

reasons for doing code reviews.

At present, its difficult to measure the

trustworthiness of software components

because there are very small number of

standard methods and techniques to do

that. Also, components are exists in

different hierarchies in the system and

could be applied in various domain of

business.

Zhang et. al (2011) propose the

method to measure the trustworthiness of

software components using information

entropy index as the parameter.

According to TCG, the system is

trustworthy if its behavior and its results

are always expected and controllable.

Currently, various type of data are

produced massively every day. Those data

have important role in lot of business

process in our daily life. Therefore,

essentially we need to process data

effectively and efficiently. In this context,

there are four kinds of components in data

processing area: data conversion

components, data analysis components and

data display components.

When we want to measure the

trustworthiness of components we must

consider about trustworthy proof. There

are two kinds of trustworthy proofs need to

be reported during the component

development: process proofs and testing

proofs. Testing proofs is reported in the

testing environment. The component

trustworthiness will be guaranteed only

when both of process proofs and testing

proofs meet the trustworthiness

requirement. The component with

guaranteed trustworthiness then can be

stored in the component library for future

use. The framework for trustworthiness

measurement is shown in Fig. 6.

Figure 6. Trustworthiness measurement

 framework (Zhang et. al, 2011)

A system usually consists of some

various factors and each factor in a system

has an uncertainty. From this concept we

can define the uncertainty of the system is

the weighted average of factors’

uncertainties. Claude E. Shannon in his

1948 paper “A Mathematical Theory of

Communication” representing a measure

of unpredictability of a system using the

formula of entropy.

The formula: Entropy = ∑ log pi (1)

Based on the definition of the

trustworthiness we can ensure the system

is trustworthy if its behavior and its result

is always controllable and satisfy the

expectation. In other word we can say that

the trustworthiness level is equal with the

match condition between the result from

the system result and the user expectation.

In the software development process we

can consider the component as a function.

We can ensure that there must be

ascertained output data if input data have

been ascertained. Therefore, the

understanding level of the component can

be verified based on the matching

condition between the result and

expectation.

This method suggest entropy for the

criteria tomeasure the component

trustworthiness. The correlation between

trustworthiness and the entropy is

negative, the component has high

trustworthiness level if its entropy is small.

To measure the entropy of the

component we must consider all of four

stage In the component development

stages: the component requirement stage,

the component design stage, the

component code implementation stage,

and the component testing stage. We apply

the entropy formula (1) to calculate the

component entropy at every step. The

trustworthiness tree in trustworthiness

measurement is shown in Fig. 7.

Figure 7. Trustworthiness tree(Zhang et.

al, 2011)

3.4. Thrustworthiness Evaluation of

Open Source Components

One of the main consideration of the

integrators when developing software

system using ready-made components is

the quality of the component. When we

develop system using Open Source

Components (OCSs) we have to evaluate

the reliability of OSCs. This is very

important because if OSCs are not reliable

they can cause some significant faults and

reliability problems to the system.

Evaluation of the reliability of OSCs is

quite difficult because the only available

artifact is the source code.

Immonen & Palviainen (2007)

propose evaluation and testing method to

validate the trustworthiness of OCSs. They

define the software trustworthiness as “the

degree of confidence that exist that it

meets a set of requirement”. To evaluate

the trustworthiness in software

development process, they suggest two

type of evaluation: The technical and the

non-technical evaluation.

The technical trustworthiness

evaluation verify the software

trustworthiness using quantitative

reliability analysis in three level: the

component level, the architecture level,

and the system level. The non-technical

trustworthiness evaluation combine some

artifacts such as history and reputation of

OSC, the evaluation of user communities,

quality of OSC development process, and

the property of OSC provider (see Table

1).

Table 1. The levels of trustworthiness evaluation method (Immonen & Palviainen, 2007)

The RAP method is used as the basis

for the technical part of the trustworthiness

evaluation method. The RAP method is

extended to support model-based

reliability analysis and implementation-

based reliability testing. Model-based

reliability analysis is used to evaluate the

level of reliability at two levels, the

component and architecture levels. At the

component level, the analysis use the

probability of failure before component

implementation to predict reliability. The

probability of failure of components then

will be combined with architectural

models and system execution paths to

simulate the system.

Implementation-based reliability

testing use unit tests to evaluate reliability

at the component level and tests the system

when the component is integrated in the

system.

New method and tool was developed

by Immonen and Palviainen based on the

RAP tool to support reliability testing of

OSCs. Eclipse (http://www.eclipse. org/)

was chosen for this method because

Eclipse is able to promote interopability of

tools. Also, Eclipse provide an extensible

application framework which is very

useful for software engineer when thy

want to build a software system. The input

for reliability evaluation is architectural

model which using UML and the testing

environtment is an open Eclipse Test and

Performance Tools Platform (TPTP)

(http://www.eclipse.org/tptp/). Reliability

analysis tool in Eclipse is shown in Fig. 8.

Figure 8. Reliability analysis tool in

Eclipse(Immonen & Palviainen, 2007)

5. COMPONENT SELECTION IN

INDUSTRIAL PRACTICES

At present, the software industry

recognize the approach of reusing third-

party software to build software system as

an significant success factor. Torchiano &

Morisio (2004) in Ayala et. al (2011)

define an OTS component as “a commer-

cially available or open source piece of

software that other software projects can

reuse and integrate into their own

products”. One kind of software

components is Commercial-Off-The-Shelf

(COTS) software which acquired by a fee.

Companies use COTS to improve their

software development process and achieve

some great advantages for their business

process: cost and time efficiencies,

technology adoption acceleration, and

better quality software. Nowadays, there

are a lot of COTS available for various

application areas.

One of the most important things in

reusing COTS is the ability of the

components integrators to evaluate which

COTSs are appropriate for the system.

Currently, software companies are still

having problems about how to select

appropriate COTSs for their system. The

evidence shows that most of the proposed

methods from the “research area” are

rarely used in the industrial practice.

Ayala et. al (2011) investigate the

common practices of the COTSs selection

process done by 20 software companies in

Spain, Norway, and Luxembourg. Form

their investigation, it was found that the

most popular process done by software

companies to select COTSs in the soffware

system development is informal evaluation

. Common process used by companies to

select COTSs listed in Table 2.

Most of the companies did not use any

formal evaluation method to select COTSs

for their system. Also, most of companies

select the COTSs without using the

documentation of the COTSs for their

subsequent comparison. For most of

companies, there are two main things that

influence the evaluation process: their

previous experience with the COTSs and

the critically of the COTSs with in the

system to be built. Sometimes, the

companies just use the opinions about the

COTSs from the experiences of people for

the basis of the evaluation process.

Some companies hired consultants for

their COTSs evaluation process, but most

of them only hire consultants for critical

projects. Some companies stated that they

hired a consultant to minimize the

potential risks in critical projects. Some

companies follows specific procedures to

ensure the quality of their system but some

other companies did not have a specific

procedure, they only use a spreadsheet tool

to support the evaluation process.

In general, all companies consulting to

the COTSs provider to search the COTSs

information. Some methods used by the

companies to evaluate the COTSs are

listed in Table 3. From information in

Table 3 we found that the most popular

method used by the companies is testing of

the basic functionalities of the COTSs.

Table 2. Processes to evaluate COTSs (Ayala et. al, 2011)

Table 3. Methods to evaluate COTSs (Ayala et. al, 2011)

6. CONCLUCIONS

The use of reusable software

component have some great advantages

and have a significant role in current

software development practices. This

paper discuss about some important points

related with the concept of the

trustworthiness of software component and

we investigate some proposed methods to

evaluate the trustworthiness of software

components. In this paper we also discuss

about the process to select components in

industrial practices.

We found that there is still a gap

between “research” area and “industry

“area”. The further research is still needed

to minimize this gap. We are interested in

applying the proposed methods in some

real project so we can verify wether the

proposed methods are appropriate to

accommodate real industrial needs.

REFERENCES

Alvaro, A., Santana de Almeida, E., &

Romero de Lemos Meira, S. (2010).

A software component quality

framework. ACM SIGSOFT

Software Engineering Notes, 35(1),

1-18.

Andreessen, M. (2011). Why Software Is

Eating The World'. Wall Street

Journal, 20.

Bertolino, A. (2007, May). Software

testing research: Achievements,

challenges, dreams. In 2007 Future

of Software Engineering (pp. 85-

103). IEEE Computer Society.

Immonen, A., & Palviainen, M. (2007,

October). Trustworthiness evaluation

and testing of open source

components. In Quality Software,

2007. QSIC'07. Seventh

International Conference on (pp.

316-321). IEEE.

Ayala, C., Hauge, Ø., Conradi, R., Franch,

X., & Li, J. (2011). Selection of third

party software in Off-The-Shelf-

based software development—An

interview study with industrial

practitioners. Journal of Systems and

Software, 84(4), 620-637.

Booch, G., Rumbaugh, J., & Jacobson, I.

(1999). The unified modeling

language user guide. Reading, UK:

Addison Wesley.

Dan, W., & Jing, Z. (2009, April). A

Formal Verification Model for

Trustworthiness of Component

Interface. In Networks Security,

Wireless Communications and

Trusted Computing, 2009.

NSWCTC'09. International

Conference on (Vol. 2, pp. 643-646).

IEEE.

Garlan, D., Allen, R., & Ockerbloom, J.

(1995, April). Architectural

mismatch or why it's hard to build

systems out of existing parts. In

Software Engineering, 1995. ICSE

1995. 17th International Conference

on (pp. 179-179). IEEE.

JiuSong, H., Hong, H., QinBao, S., &

KeGang, H. (2009, December).

Reference Model of Trustworthy

Proof for Trusted Components. In

Future Information Technology and

Management Engineering, 2009.

FITME'09. Second International

Conference on (pp. 136-139). IEEE.

Jones, G., & Prieto-Diaz, R. (1988,

October). Building and managing

software libraries. In Computer

Software and Applications

Conference, 1988. COMPSAC 88.

Proceedings., Twelfth

International (pp. 228-236). IEEE.

Kaindl, H. (2013, December). Software

Reuse Based on Business Processes

and Requirements. In Software

Engineering Conference (APSEC,

2013 20th Asia-Pacific (pp. 85-86).

IEEE.

Leach, R. J. (2012). Software Reuse:

Methods, Models, Costs. AfterMath.

Le Lann, G. (1997, March). An analysis of

the Ariane 5 flight 501 failure-a

system engineering perspective. In

Engineering of Computer-Based

Systems, 1997. Proceedings.,

International Conference and

Workshop on (pp. 339-346). IEEE.

Lions, J. L. (1996). Ariane 5 flight 501

failure.

Lyu, M. R. (2007, May). Software

reliability engineering: A roadmap.

In 2007 Future of Software

Engineering (pp. 153-170). IEEE

Computer Society.

Meyer, B. (2003, May). The grand

challenge of trusted components. In

Software Engineering, 2003.

Proceedings. 25th International

Conference on (pp. 660-667). IEEE.

Morris, J., Lee, G., Parker, K., Bundell, G.

A., & Lam, C. P. (2001). Software

component certification. Computer,

34(9), 30-36.

Panunzio, M., & Vardanega, T. (2009,

August). On component-based

development and high-integrity real-

time systems. In Embedded and

Real-Time Computing Systems and

Applications, 2009. RTCSA'09. 15th

IEEE International Conference

on (pp. 79-84). IEEE.

Snow, K. Z., Monrose, F., Davi, L.,

Dmitrienko, A., Liebchen, C., &

Sadeghi, A. R. (2013, May). Just-in-

time code reuse: On the

effectiveness of fine-grained address

space layout randomization. In

Security and Privacy (SP), 2013

IEEE Symposium on (pp. 574-588).

IEEE.

Zhang, X., Wu, H., & Lu, Y. (2011,

April). The Exploration of the

Component's Trustworthiness

Measurement Method in the Data

Processing Domain. In ITNG (pp.

186-190).

Kaur, A., & Mann, K. S. (2010).

Component based software

engineering.International Journal of

Computer Applications, 2(1), 105-

108.

Szyperski, C. (2002). Component

software: beyond object-oriented

programming. Pearson Education.

Shareef, J. W., & Pandey, R. K. (2012).

Component-Based Software

Development with Component

Technologies: An Overview.

